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Abstract  22 

Recent multivariate analyses of brain data have boosted our understanding of the organizational 23 

principles that shape neural coding. However, most of this progress has focused on perceptual 24 

visual regions (Connolly et al., 2012), whereas far less is known about the organization of more 25 

abstract, action-oriented representations. In this study, we focused on humans’ remarkable ability 26 

to turn novel instructions into actions. While previous research shows that instruction encoding 27 

is tightly linked to proactive activations in fronto-parietal brain regions, little is known about the 28 

structure that orchestrates such anticipatory representation. We collected fMRI data while 29 

participants (both males and females) followed novel complex verbal rules that varied across 30 

control-related variables (integrating within/across stimuli dimensions, response complexity, 31 

target category) and reward expectations. Using Representational Similarity Analysis 32 

(Kriegeskorte et al., 2008) we explored where in the brain these variables explained the 33 

organization of novel task encoding, and whether motivation modulated these representational 34 

spaces. Instruction representations in the lateral prefrontal cortex were structured by the three 35 

control-related variables, while intraparietal sulcus encoded response complexity and the fusiform 36 

gyrus and precuneus organized its activity according to the relevant stimulus category. Reward 37 

exerted a general effect, increasing the representational similarity among different instructions, 38 

which was robustly correlated with behavioral improvements. Overall, our results highlight the 39 

flexibility of proactive task encoding, governed by distinct representational organizations in 40 

specific brain regions. They also stress the variability of motivation-control interactions, which 41 

appear to be highly dependent on task attributes such as complexity or novelty.  42 

Significance Statement 43 

In comparison with other primates, humans display a remarkable success in novel task contexts 44 

thanks to our ability to transform instructions into effective actions. This skill is associated with 45 

proactive task-set reconfigurations in fronto-parietal cortices. It remains yet unknown, however, 46 

how the brain encodes in anticipation the flexible, rich repertoire of novel tasks that we can 47 

achieve. Here we explored cognitive control and motivation-related variables that might 48 
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orchestrate the representational space for novel instructions. Our results showed that different 49 

dimensions become relevant for task prospective encoding depending on the brain region, and 50 

that the lateral prefrontal cortex simultaneously organized task representations following different 51 

control-related variables. Motivation exerted a general modulation upon this process, diminishing 52 

rather than increasing distances among instruction representations.   53 
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Introduction  54 

Humans quickly learn from instructions which elements are relevant in a context and their 55 

respective appropriate actions. These parameters are encoded proactively in our brain in an action-56 

based code (Brass, Liefooghe, Braem, & De Houwer, 2017; Cole, Braver, & Meiran, 2017), 57 

preparing our perceptual and motor systems in advance (Cole, Laurent, & Stocco, 2013) and 58 

facilitating success in novel environments. Instructed behavior is thus critical to avoid less 59 

effective and slow trial-and-error learning, and also enables the social transmission of task 60 

procedures. There is scarce knowledge, however, about how the informational and motivational 61 

content of novel instructions organizes neural activity in a proactive manner.  62 

Behavioral results support the role of proactive control (Braver, 2012) on instructed action (e.g.  63 

Liefooghe, Wenke, & De Houwer, 2012; see also Cole, Patrick, & Braver, 2018; Duncan et al., 64 

2008; Luria, 1966). Recently, neuroimaging studies have revealed a link between novel 65 

instruction preparation and the fronto-parietal (FP) network (e.g. Cole, Bagic, Kass, & Schneider, 66 

2010; Hartstra, Kühn, Verguts, & Brass, 2011; Palenciano, González-García, Arco, & Ruz, 2018). 67 

The middle (MFG) and inferior (IFG) frontal gyri, and the inferior frontal sulcus (IFS), together 68 

with the intraparietal sulcus (IPS), encode novel instruction content both in multivoxel activity 69 

patterns (Bourguignon, Braem, Hartstra, De Houwer, & Brass, 2018; González-García, Arco, 70 

Palenciano, Ramírez, & Ruz, 2017; Muhle-Karbe, Duncan, De Baene, Mitchell, & Brass, 2017) 71 

and distributed functional connectivity (Cole, Laurent, et al., 2013). Crucially, the fidelity of 72 

information encoding is linked to the intention to implement the instruction (versus mere 73 

memorization demands; Bourguignon et al., 2018; Muhle-Karbe et al., 2017) and it is also closely 74 

related to the efficiency of behavior (Cole, Ito, & Braver, 2016; González-García et al., 2017). 75 

Nonetheless, while current studies have mainly focused on decoding the upcoming target category 76 

(González-García et al., 2017; Muhle-Karbe et al., 2017), the wider organizational structure that 77 

shapes anticipatory task representation remains unknown. To study the relevant dimensions 78 

organizing novel instruction encoding, we selected three variables known to be relevant for 79 

proactive control.  80 
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Task preparation consists of a two-step process (Rubinstein et al., 2001), composed first by an 81 

abstract goal reconfiguration and second by the activation of specific stimulus-response 82 

contingencies (De Baene & Brass, 2014; Muhle-Karbe, Andres, & Brass, 2014). Our study 83 

exploited these two phases. First, in relation to the high-level task goal setting, we manipulated 84 

the integration of information within or across feature dimensions of stimuli (Rigotti et al., 2013), 85 

a variable traditionally linked to task complexity and top-down attention (e.g. Treisman & Gelade, 86 

1980). Second, the stimulus-response reconfiguration process was manipulated by the response 87 

set complexity, requiring single or sequential motor responses. Moreover, to explore stimuli-88 

specific preparatory mechanisms previously documented (e.g. González-García, Mas-Herrero, de 89 

Diego-Balaguer, & Ruz, 2016; Sakai & Passingham, 2003, 2006), we also manipulated the 90 

relevant target category.  91 

Finally, cognitive control and motivation maintain an intricate relationship during task 92 

preparation (Pessoa, 2009, 2017). Reward expectation boosts cue-locked activity across the FP 93 

network (Parro, Dixon, & Christoff, 2017), and it has been recently linked to stronger anticipatory 94 

rule encoding (Etzel, Cole, Zacks, Kay, & Braver, 2016). Nonetheless, contradictory findings 95 

have also been found (Wisniewski, Forstmann, & Brass, 2018), and a comprehensive 96 

characterization of this interaction in complex, novel scenarios is still pending. Consequently, we 97 

included economic incentives in our paradigm and assessed the nature of their effect on 98 

instruction preparation. By varying these four variables (dimension integration, response-set 99 

complexity, target category, and reward), we built a set of novel, verbal instructions that were 100 

followed by healthy participants while functional magnetic imaging (fMRI) data were collected. 101 

Using Representation Similarity Analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008), we 102 

assessed the extent to which each of our control-related variables organized instruction encoding, 103 

as well as the effect of motivation upon this organization.  104 
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Materials and methods  105 

Participants  106 

Thirty-six students from the University of Granada completed the experimental paradigm inside 107 

an MRI scanner (16 women, mean age = 22.97 years, SD = 3.32 years). All of them were right-108 

handed, with normal or corrected-to-normal vision, and native Spanish speakers. In exchange for 109 

their participation, they received between 20 and 40€, depending on their performance on the 110 

rewarded trials (see below). They all signed a consent form approved by the Ethics Committee of 111 

the University of Granada. Four participants were later excluded due to excess of head movement 112 

(> 3mm) or poor performance (<70% of correct responses).  113 

Apparatus, stimuli, and procedure 114 

For the experiment, we built a set of 192 different novel verbal instructions. Each instruction 115 

referred to two independent conditions about faces or food items that could be met or not by the 116 

upcoming grids, and their associated responses (e.g.: “If there are two women and an additional 117 

sad person, press A; if not, press L”). The conditions in the instructions referred to several 118 

dimensions of the stimuli: gender (woman, man), race (black, white), emotion (happy, sad) and 119 

size (big, small) of faces, or kind (fruit, vegetable), color (green, yellow), form (round, elongated) 120 

and size (big, small) of food items.  121 

Instructions were created by manipulating in an orthogonal manner (1) the Integration of stimuli 122 

dimensions (within vs. across dimensions), (2) the Response set required (single vs. sequential) 123 

and (3) the Category of the relevant stimuli that they referred to (faces vs. food). For example, 124 

the instruction “If there is a woman and there is a man, press A; if not, press L” involves within-125 

dimension integration (i.e., gender), requires a single response (a left –“A”– or a right –“L”– index 126 

button press) and is face-related. On the other hand, “If there is a fruit and a small food item, 127 

press AL; if not, press LA” requires across-dimension integration (the type of food and its size), 128 

demands a sequence of two button presses to respond and is food-related. Instructions referred to 129 
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either 2, 3 or 4 stimuli of the target grid. Equivalent trials were created for the different levels of 130 

these three variables.  131 

In addition, we included Motivation as another variable: half of the instructions were associated 132 

with the possibility of receiving an economic reward if responses were fast and accurate while 133 

the other half were non-rewarded. To do so, we split our 192 instructions into two equivalent sets 134 

in terms of the manipulations of the other independent variables, and also regarding the specific 135 

attributes specified (e.g., the same number of instructions referring to happy faces in both groups). 136 

We counterbalanced across participants the assignment of these two halves to the rewarded and 137 

non-rewarded conditions. The reward status of each trial was indicated by a cue consisting on 138 

either a plus (+) or a cross (x) sign, in either silhouette or filled in black. We counterbalanced 139 

across participants whether they should attend to the shape (plus vs. cross) or the appearance 140 

(contour vs. filled sign) to obtain the reward information. This way, each participant had two 141 

different cues indicating each motivation condition, preventing a one-to-one mapping between 142 

reward expectation and visual cue identity, which otherwise could generate spurious confounds 143 

in further analysis.  144 

For each instruction, we created two grids of stimuli, one that fulfilled the conditions instructed, 145 

and another one that did not. We counterbalanced them so that individual participants saw only 146 

one of the two instruction-grid pairings. All grids were unique combinations of images of 4 faces 147 

and 4 food items, which were pseudo-randomly selected from a pool of 32 pictures, composed by 148 

16 faces pictures (8 different identities, half of them women and half men, half with happy 149 

expression and half with sad ones, half white and half black, appearing each of them in large and 150 

small sizes), extracted from the NimStim database (Tottenham et al., 2009), and 16 food pictures 151 

(8 different items, half of them vegetables and half fruits, half in green color and half in yellow, 152 

half with a round shape and half elongated, appearing each of them in large and small sizes) 153 

obtained from available sources on the internet (all of them with Creative Commons license). 154 

Upon target presentation, the responses required were always one or two sequential button 155 

presses, performed with the left (“A”) and/or right (“L”) index. The sequence of trial events is 156 

.CC-BY-NC-ND 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted July 22, 2019. . https://doi.org/10.1101/710244doi: bioRxiv preprint 

https://doi.org/10.1101/710244
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

depicted in Figure 1. Each trial started with a jittered fixation point (0.5o), with a duration that 157 

ranged from 4500 to 7500ms, in steps of 500ms (mean = 5750ms). Then, a reward cue was 158 

presented (1.5 o; 2000ms), followed by the instruction (25.75o; 2500ms). Next a second jittered 159 

fixation appeared (with the same characteristics as the previous one), and the target grid (21o) was 160 

presented for 2500ms, where participants were required to respond. Afterward, a feedback symbol 161 

was presented (1.65 o; 500ms), indicating whether the participant had earned money in that trial 162 

(with a Euro symbol), whether the response was correct but no money was achieved (tick symbol) 163 

or whether the response was incorrect (cross symbol).  164 

 165 

Fig.  1: Sequence of events in a single trial. Face stimuli (obscured in the preprint version) were 166 

obtained from the NimStim database (Tottenham et al., 2009).  167 

Before being scanned, participants completed a behavioral practice session. They received 168 

indications about how to perform the task, as well as details on how rewards would be 169 

administered, emphasizing that both accurate and fast responses were needed to accumulate 170 

money for a maximum of 40€. Specifically, they were informed that they would receive 20€ for 171 

their time and that the rest of the compensation would depend on their performance on rewarded 172 

trials: the initial extra increases would be easier to earn while approaching the upper limit of the 173 

payment would require a higher accuracy rate. Then, they performed a simple discrimination task 174 
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with the different reward cues, and after that, they practiced the instruction-following task, 175 

completing one block of 32 trials. Practice instructions were drawn from a separate set (which 176 

was equivalent in all the parameters specified above) and were not employed in the MRI 177 

experiment, to maintain trial novelty. Participants repeated the practice block as many times as 178 

needed to obtain an accuracy rate above 75% (on average, participants performed the practice 179 

block 1.75 times). Once this phase was completed, the experimental paradigm was performed 180 

inside the scanner. This was composed by the full 192 instructions set, presented in six different 181 

runs (32 trials each). All runs included an equal number of face and food-related, single and 182 

sequential responses, within and across-dimension integration and rewarded and non-rewarded 183 

instructions. Overall, participants spent 90 minutes approximately inside the MRI scanner.  184 

fMRI preprocessing and analysis 185 

MRI data were acquired using a 3-Tesla Siemens Trio scanner located at the Mind, Brain, and 186 

Behavior Research Center (CIMCYC, University of Granada, Spain). Functional images were 187 

collected employing a T2* Echo Planar Imaging (EPI) sequence (TR = 2210ms, TE = 23ms, flip 188 

angle = 70º). Each volume consisted of 40 slices, obtained in descending order, with 2.3mm of 189 

thickness (gap = 20%, voxel size = 3mm3). A total of 1716 volumes were obtained, in 6 runs of 190 

286 volumes each. We also acquired a high-resolution anatomical T1-weighted image (192 slices 191 

of 1mm, TR = 2500ms, TE = 3.69ms, flip angle = 7º, voxel size = 1mm3).  192 

The functional images were preprocessed and analyzed with SPM12 193 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), with the exception of single-trial parameter 194 

estimation (see RSA section), which was conducted on AFNI. After discarding the first four 195 

volumes of each run to allow for stabilization of the signal, the images were spatially realigned 196 

and slice-time corrected. Then, the participants’ structural T1 image, which had been coregistered 197 

with the EPI volumes, was segmented to obtain the transformation matrices needed to normalize 198 

the functional images to the MNI space. Finally, they were smoothed with an 8mm FWHM 199 

Gaussian kernel. The full preprocessing pipeline was completed before conducting the univariate 200 

analysis, while only realigned and slice-timing corrected images were employed for the 201 
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multivariate tests (see next section). In the latter, normalization and smoothing were performed 202 

after the individual-level analysis, following the same strategy as above.  203 

Control univariate analysis 204 

We first conducted a univariate standard GLM, modelling each of the sixteen combinations of our 205 

variables (for example: within-dimension integration/simple response required/faces-related/ 206 

rewarded) and specifying two regressors per trial: one for the encoding phase (from the reward 207 

cue until the end of the instruction), and another for the implementation stage (encompassing the 208 

target grid presentation and until the end of the feedback cue). All regressors were convolved with 209 

the canonical hemodynamic response function. We also added error trials and six motion 210 

parameters as nuisance regressors, and a high-pass filter of 128s to avoid low-frequency noise.  211 

The rationale of this analysis was to check the effect of motivation during the encoding of novel 212 

instructions with the aim of ensuring that our manipulation successfully generated typical reward-213 

related patterns of activation (Parro et al., 2017). This was done by performing t-tests at the 214 

individual (first) level, contrasting rewarded versus non-rewarded encoding regressors, and 215 

carrying these statistical maps to a group one-sample t-test. The result was cluster-wise FWE-216 

corrected for multiple comparison at P < .05 (from an initial threshold of P < .001 and k = 10). 217 

With this approach, we obtained one large cluster that extended across multiple brain regions. To 218 

obtain smaller, anatomically coherent clusters, we employed a stricter threshold (uncorrected 219 

cluster-forming threshold of P < .0001, with the corresponding FWE correction at P < .05), as 220 

done previously (e.g. Dumontheil et al., 2011; Palenciano et al., 2018). 221 

Representational Similarity Analyses  222 

We conducted a series of multivariate RSAs, following a two-step approach. First, we analyzed 223 

whole-brain data, using a searchlight approach, to find regions encoding novel instructions 224 

according to each of our three control-related variables. Second, we used the significant areas as 225 

Regions Of Interest (ROIs) and focused on them to explore the effect of reward on their 226 

representational geometry.  227 
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Whole-brain model-based RSA. We first studied whether the representational structure of novel 228 

instructions was explained by three variables related to cognitive control preparation: dimension 229 

integration, response set complexity and target category. Importantly, we specifically wanted to 230 

explore this during the initial encoding stage, where proactive task-set reconfiguration takes place. 231 

To do so, we first obtained trial-by-trial estimations of our signal, following a Least-Square-Sum 232 

approach (LSS; Turner, 2010) to ensure the smallest possible collinearity among regressors (Arco, 233 

González-García, Díaz-Gutiérrez, Ramírez, & Ruz, 2018). We generated and estimated one 234 

separate model per trial, in which we defined: (1) a regressor isolating the encoding phase of the 235 

individual trial of interest; (2) a second regressor containing the rest of trials (encoding phase) of 236 

the same condition; (3) thirty-one additional regressors encompassing the rest of conditions at the 237 

encoding and implementation phases (as in the GLM specified above), and (4) nuisance regressors 238 

(movement, errors). To do so, we employed AFNI’s function 3dLSS 239 

(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dLSS.html). Once the trial-wise 240 

parameter images were obtained, the rest of the RSA was performed with The Decoding Toolbox 241 

(Hebart, Görgen, & Haynes, 2014).  242 

In our analysis, we compared three theoretical models of representational organization (one per 243 

preparation-related independent variable) with the empirical one, built from spatially distributed 244 

activity patterns. To do so, we employed a spherical searchlight (radius: 4 voxels) and applied it 245 

to the whole brain (Kriegeskorte, Goebel, & Bandettini, 2006). First, we built three theoretical 246 

representational dissimilarity matrices (RDM, Fig. 2a), which captured the expected dissimilarity 247 

(represented with 0s and 1s) between pairs of trials, according to the corresponding variables of 248 

interest. For example, in the Category RDM, dissimilarity is expected to be minimal within pairs 249 

of trials that refer either to faces or to food, while maximal between pairs of trials referring to 250 

different target categories. Then, in each iteration of the searchlight, we generated a neural RDM, 251 

using a measure of distance based on Pearson correlation. Specifically, we extracted the 252 

corresponding single-trial beta values of the voxels involved, correlated each pair of the trials’ 253 

activity patterns, and subtracted that value from 1. Afterwards, this neural RDM was Spearman-254 
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correlated with the theoretical ones (Fig. 2c), and the coefficients were normalized with Fisher’s 255 

z transformation and assigned to the central voxel of the searchlight sphere. Importantly, both 256 

theoretical and neural matrices were built trial-wise (i.e., not averaging within conditions), and 257 

thus, were fully symmetrical with a diagonal of 0s. Consequently, only the lower triangle of the 258 

matrices, excluding the diagonal, was included in the correlation to avoid inflated positive results 259 

(Ritchie, Bracci, & Op de Beeck, 2017). After iterating the searchlight across the whole brain, we 260 

obtained three maps per participant representing how well the representational geometry in 261 

different regions matched the one expected by each of our three theoretical models.   262 

Statistical significance was assessed non-parametrically via permutation testing, as proposed by 263 

Stelzer, Chen, & Turner (Stelzer, Chen, & Turner, 2013). We first performed 100 permutations at 264 

the individual level, where trial labels were randomly shifted and the whole analysis was repeated. 265 

Then, at the group level, we resampled 50,000 times one of the permuted maps of each subject 266 

and averaged them. The resulting bootstrapped group maps were used to build a voxel-wise null 267 

distribution of correlation values, which was used to extract the correlation coefficient coinciding 268 

with a probability of 0.001 of the right-tailed area of the distribution (i.e., linked to a p <= .001) 269 

of each individual voxel. The group map of the results was then thresholded using these values. 270 

From the bootstrapped maps we also built a null distribution of cluster sizes (Stelzer, Chen, & 271 

Turner, 2013), which determined the probability of each cluster extent under the null distribution. 272 

We used this to assign the corresponding P value to the surviving clusters of the group results 273 

map, and FWE-corrected (P < .05) them to control for multiple comparisons.  274 

We performed a further conjunction test to find areas sharing the three representational 275 

organizational schemes. To do so, we thresholded (P < .05, FWE corrected) and binarized the 276 

three maps from the previous step, and obtained the overlapping voxels (Nichols, Brett, 277 

Andersson, Wager, & Poline, 2005). 278 

Importantly, the RSA results could be influenced by other variables statistically related to our 279 

manipulations (Popov, Ostarek, & Tenison, 2018), such as instructions’ length and speed of 280 

responses, which differed slightly between conditions. To examine their influence on the results, 281 
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we performed an additional multiple regression analysis taking both variables into account. We 282 

built two different RDMs (see Fig. 2.b) in which each cell contained the absolute difference in 283 

the number of letters (instruction’s length RDM) or reaction time (response speed RDM), 284 

respectively, between specific pairs of instructions. We then used them as regressors together with 285 

the three proactive control-related RDMs, predicting the neural pattern of dissimilarities in each 286 

iteration of a searchlight. The regressors were built vectorizing the lower triangle of the RDM, 287 

excluding the diagonal values. It is important to note that there were small but still significant 288 

correlations among some of the regressors included in the analysis. Specifically, dimension 289 

integration correlated with instruction length and RT, and target category did so with instruction 290 

length. To assess the impact of these correlations on the regression estimation, we computed 291 

Variance Inflation Factors (Mumford, Poline, & Poldrack, 2015), an index of the regressors’ 292 

collinearity. For our five models, and in all the participants, VIF were always below 1.1 (being 5 293 

a typical cutoff above which the estimation would be compromised; Mumford et al., 2015). Thus, 294 

even despite the relationship among variables, the results of our main analyses are still 295 

meaningful. The corresponding beta weight maps obtained showed the regions where the effect 296 

of our variables of interest remained significant even when instruction’s length and response 297 

speed were included.   298 

Finally, even when the distance measure employed to build the neural RDMs (i.e., Pearson 299 

correlation) is insensitive to differences in mean signal intensity between conditions, differences 300 

in signal variance could be affecting it (Walther et al., 2016). For that reason, these analyses as 301 

well as the reward-related tests (see below), were repeated after a z-normalization of the 302 

multivoxel activity patterns, ensuring equal mean (0) and standard deviation (1) across all pairs 303 

of trials. The results thus obtained did not differ from the initial non-normalized ones, so we do 304 

not report them here.  305 

  306 

.CC-BY-NC-ND 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted July 22, 2019. . https://doi.org/10.1101/710244doi: bioRxiv preprint 

https://doi.org/10.1101/710244
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

 307 

Fig. 2: Main analysis procedure. (a) Theoretical Representational Dissimilarity Matrices (RDMs) employed in the 308 

Representational Similarity Analysis (RSA). Within/Across-D. stands for within-dimension and across-dimension 309 

integration, while Single/Sequential R. stands for single response and sequential response. (b)  RDMs capturing 310 

differences in instruction length (number of letters) and reaction time, included in a multiple regression analysis 311 

together with matrices shown in (a) to control for the effect of these two variables. (c) Following a searchlight 312 

approach, we extracted the neural RDM at each brain location and compared it – via Spearman correlation – with our 313 
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three theoretical RDMs. As a result, we obtained three whole-brain correlation maps, one per model. (d) To assess the 314 

effect of motivation, for each region significant in (c) we extracted the neural RDMs from rewarded (R+) and non-315 

rewarded (NR) trials. To study potential interactions of reward expectation and the corresponding model variable 316 

(Hypothesis 1), we averaged the dissimilarity values among same-condition and different-condition trials and tested if 317 

the subtraction among these two values was higher in the rewarded condition (using Wilcoxon signed-rank test). We 318 

also checked for a general increase in dissimilarities associated to reward (Hypothesis 2). Note: All matrices in the 319 

figure were simplified for visualization purposes by averaging cells within conditions. The matrices shown in (b) 320 

were further averaged across the sample. In (d), matrices display only one task variable (collapsing between the 321 

remaining two) to highlight the analysis logic. In all the analyses, however, trial-wise and single subject matrices 322 

were employed. 323 

ROI-based RSA. The previous analysis identified brain areas encoding instructions according to 324 

each one of three proactive control variables, separately. We next ran ROI analyses to further 325 

explore the role of the three variables for task coding in these regions. Specifically, we estimated 326 

the extent to which each of the manipulated control variables explained the neural organization 327 

in the ROIs identified in the previous analysis. We followed a Leave-One-Subject-Out (LOSO) 328 

cross-validation procedure (Esterman, Tamber-Rosenau, Chiu, & Yantis, 2010), using the 329 

searchlight maps obtained before. First, we identified regions sensitive to each of the three models 330 

for each participant, running a group level t-test with the corresponding maps from the rest of the 331 

sample, i.e., excluding their own data. Significant clusters showing consistency across all LOSO 332 

iterations were selected as ROIs, and inverse normalized to the participants’ native space. In a 333 

second step, we estimated the ROIs RDMs and correlated them with the three models RDMs. 334 

Importantly, thanks to the LOSO procedure we avoided circularity in the analysis, as independent 335 

data was employed to select the ROIs and to compute de correlations with the models. The 336 

correlation coefficients (for each participant, one per ROI and model) were then introduced in a 337 

repeated measures ANOVA, with ROI and Model as factors, and the interaction term was 338 

examined to detect heterogeneity in task encoding organization across regions (Reverberi, 339 

Gorgen, & Haynes, 2012). Interactions were further characterized by one sample t-tests, in order 340 

to determine which models had an effect on the different regions studied. Whenever the normality 341 

assumption was not met (assessed with the Saphiro-Wilk test), we employed Wilcoxon signed-342 
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rank tests instead. All P values were Bonferroni-corrected for multiple comparisons, adjusting 343 

them to the number of ROIs explored.   344 

Additionally, we aimed to extrapolate our findings to regions consistently found in the literature 345 

during both practiced (e.g. Woolgar, Hampshire, Thompson, & Duncan, 2011) and novel (e.g. 346 

González-García et al., 2017) task preparation, and in general, when demanding cognitive 347 

processing is deployed (Duncan, 2010). This set of brain areas belong to the Multiple Demand 348 

Network (MDN; Duncan, 2010), which includes the bilateral RLPFC, MFG, IFS, anterior 349 

insula/frontal operculum (aIfO) area, IPS, anterior cingulate cortex (ACC) and pre-supplementary 350 

area (preSMA). To assess the organization of novel task encoding across this MDN, we employed 351 

functionally derived masks of its nodes (from Fedorenko, Duncan, & Kanwisher, 2013; template 352 

available at http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem), inverse normalized them to 353 

the participants' native space, and followed the same ROI-approach as above, extracting each ROI 354 

RDM and correlating it with the models' matrices. Again, correlation coefficients were entered 355 

into a repeated measures ANOVA with ROI and Model as factors, interactions were examined, 356 

and finally, a series of one-sample t-tests (or Wilcoxon signed-rank test when normality was 357 

violated) were conducted.  358 

Analysis of reward-related effects on RSA results. A final goal of our study was to assess whether 359 

the representational space of novel instructions was affected by motivation. Our initial hypothesis 360 

was that reward would polarize the representational geometry, enhancing the effect of our control-361 

related variables at structuring rule encoding. In other words, and taking as an example the target 362 

category variable, we assessed whether reward expectations would increase the distance between 363 

representations of instructions referring to different stimulus categories (in extension to the other 364 

variables, indicated as different-condition dissimilarity), while decreasing the distance among 365 

those referring to same target category (same-condition dissimilarity). Our second, alternative 366 

hypothesis was that reward would exert a general effect, globally increasing the distances among 367 

instruction representations, independently of the other variables manipulated. In this sense, we 368 

expected that both different and same-condition dissimilarity would be increased in rewarded 369 
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trials, in comparison with non-rewarded ones. The two possibilities would be compatible with 370 

previous findings showing that reward expectancy enhances rule decodability (Etzel et al., 2016). 371 

To test these two hypotheses, we run ROI analyses (Fig. 2d) for each of our control-related 372 

variables, focusing on the regions that resulted statistically significant in the main RSA. To do so, 373 

at the individual level and for each variable, we first ran a searchlight and generated four whole-374 

brain maps containing dissimilarity values among: (1) same-condition rewarded trials; (2) 375 

different-conditions rewarded trials; (3) same-condition non-rewarded trials; and (4) different-376 

conditions non-rewarded trials. These values were the result of averaging and normalizing (with 377 

the Fisher transformation) the pertinent cells of the neural RDM (see Fig. 2c for an example) in 378 

each searchlight iteration. The maps thus obtained were normalized to the MNI space, so we could 379 

extract participants’ mean dissimilarities for each of our ROIs using MarsBar (Brett, Anton, 380 

Valabregue, & Poline, 2002). After that, and for each ROI and variable, we conducted two 381 

Wilcoxon signed-rank tests (Nili et al., 2014). First, to assess our main hypothesis, we tested 382 

whether (DifferentCond.Rewarded - SameCond.Rewarded) > (DifferentCond.NonRewarded - 383 

SameCond.NonRewarded). To explore the second possible hypothesis, we collapsed across same and 384 

different conditions, and tested if (DifferentCond.Rewarded + SameCond.Rewarded)/2 - 385 

(DifferentCond.NonRewarded + SameCond.NonRewarded)/2 was greater than 0 (Fig 2c). In both analyses, 386 

we corrected for multiple comparisons (number of ROIs being tested) with an FWE threshold of 387 

P < .05. 388 

Last, to investigate the relevance for behavior of the effect of motivation on representational 389 

structure, we correlated this effect with behavioral data. Specifically, for each participant, we 390 

computed the average decrease in dissimilarity and in the inverse efficiency scores (IES; 391 

Townsend & Ashby, 1978) linked to rewarded trials (in comparison with non-rewarded ones). The 392 

IES was employed in this analysis to take into account, simultaneously, improvements in accuracy 393 

and response speed. As we performed as many correlations as ROIs assessed in this analysis, we 394 

again controlled for multiple comparisons with an FWE threshold of P < .05. 395 

Additionally, to explore the possibility of motivation exerting an effect during the subsequent 396 
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implementation of instructions, we also ran the analyses detailed above with beta images obtained 397 

from this stage.  398 

 MVPA-based assessment of reward effects.  399 

Finally, to further connect our results with previous findings, we performed multivoxel pattern 400 

analysis (MVPA) to explore the effect of reward on decoding precisions (Etzel et al., 2016). We 401 

decoded the two conditions of each of our three control-related variables, training three binary 402 

classifiers: one for distinguishing between within versus across-dimension integration 403 

instructions, other for single versus sequential response requirements, and the last one for faces 404 

and food-related trials. This was done separately for rewarded and non-rewarded trials. Again, we 405 

used non-normalized and unsmoothed trial-wise beta images from the encoding stage. As we 406 

aimed to detect any region with reward-related increases in task decodability, we performed the 407 

MVPA in a whole brain fashion, using searchlight (instead of biasing the results using ROIs 408 

resulting from the RSA). In each searchlight iteration, we followed a leave one-run-out cross-409 

validation approach, training a linear support-vector machine classifier (C=1; Pereira, Mitchell, 410 

& Botvinick, 2009) with five of our six runs, and testing it with the remaining one, in an iterative 411 

fashion. Then, for each of our variables, we subtracted the accuracy map obtained from non-412 

rewarded trials to the map from rewarded ones, and then normalized and smoothed these images, 413 

to conduct an above zero one-sample t-test at the group level. This way, we assessed the benefits 414 

in classification precision associated with reward. 415 

Results  416 

Behavioral results 417 

We analyzed RT and accuracy data separately, conducting two repeated measures ANOVA with 418 

four factors, corresponding to the four variables manipulated: dimension integration (within vs. 419 

across), response set complexity (single vs. sequential), category (faces vs. food items) and 420 

motivation (rewarded vs. non-rewarded). Importantly, the main effect of motivation was 421 

statistically significant on both accuracy (F1, 31 = 4.97, P < .05, p
2 = .14) and RT (F1, 31 = 6.52, P 422 
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< .05, p
2 = .17) data, with more accurate (rewarded: M = 0.85, SD = 0.11; non-rewarded: M = 423 

0.83, SD = 0.12) and faster (rewarded: M = 1.16, SD = 0.21; non-rewarded: M = 1.20, SD = 0.20) 424 

responses on the rewarded condition (see Fig. 3). This indicates that participants made use of 425 

reward cues and the economic incentives had the expected effect on behavior, improving its 426 

efficiency 427 

 428 

Fig.  3: Behavioral data. Violin plots showing correct responses (a) and Reaction Time (b) data for each condition, in 429 

rewarded and non-rewarded trials. 430 
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In addition, accuracy data showed a main effect of dimension integration (F1, 31 = 9.24, P < .05, 431 

p
2 = .23), with better performance when within-dimension integration was required (within 432 

dimension: M = .86, SD = 0.13; across dimensions: M = .83, SD = 0.12), and a significant three-433 

way interaction of category, response set complexity and dimension integration (F1, 31 = 4.46, P 434 

= .043, p
2 = .13). Even despite the lack of hypothesis regarding an interaction at this level, we 435 

performed post hoc pair-wise comparisons, which revealed that the interaction was driven by less 436 

robust (P > .05) differences among within and across-dimensions trials that required a single 437 

response and was food-related (while, in the rest of combinations of independent variables, this 438 

difference was significant).  439 

On the other hand, RT results also showed a main effect of dimension integration (F1, 31 = 61.81, 440 

P < .001, p
2 = .67) in the same direction as above (within-dimension: M = 1.12, SD = 0.17; 441 

across-dimensions: M = 1.24, SD = 0.2), and a main effect of category (F1, 31 = 74.89, P < .001, 442 

p
2 = .71), with faster responses to food-related instructions (faces: M = 1.23, SD = 0.21; food 443 

items: M = 1.14, SD = 0.19). Neither the effect of response set complexity (accuracy: F1, 31 = 0.31, 444 

P = .579, p
2 = .01; reaction time: F1, 31 = 0.21, P = .653, p

2 = .01) nor any other ANOVA term 445 

resulted significant in the behavioral measures (main effect of Category on accuracy: F1, 31 = 3.23, 446 

P = .082, p
2 = .094; all interactions terms, except the ones stated above, P > .100). 447 

Univariate results: reward-related activations during instruction encoding. 448 

We first assessed mean activity during novel instruction encoding, comparing rewarded against 449 

non-rewarded trials. To do so, we performed a univariate GLM, defining regressors for each 450 

combination of variables (e.g.: within-dimension integration, single response, face-related 451 

rewarded trials), separately for the encoding and the implementation stages. A group level t-test 452 

showed that, in accordance with our expectations and previous literature (Parro et al., 2017), the 453 

basal ganglia and fronto-parietal cortices were more active for rewarded than non-rewarded 454 

instruction encoding. We observed peaks of activation (see Fig. 4) in the bilateral inferior frontal 455 

junction (IFJ), premotor and supplementary motor areas (left: [-33, 5, 26], z = 5.07, k = 489; right: 456 

[33, 2, 59], z = 4.79, k = 572), cingulate cortex ([-9, 5, 32], z = 5.48, k = 20), bilateral IPS 457 
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extending into the precuneus (left:[-18, -64, 35], z = 4.77, k = 357; right: [33, -52, 53], z = 4.36, 458 

k = 324), the accumbens, ventral portion of the caudate and thalamus ([12, -22, 20], z = 5.13, k = 459 

1176), inferior temporal gyrus ([48, -58, -13], z = 4.48, k = 52), occipital cortex ([30, -61, -25], z 460 

= 5, k = 1364) and midbrain ([0, -31, -4], z = 5.19, k = 255). Thus, regions involved in reward 461 

processing (Haber & Knutson, 2009), as well as in cognitive control paradigms with monetary 462 

incentive manipulations (e.g. Engelmann, 2009), were engaged by our task, indicating the success 463 

of the reward manipulation. 464 

 465 

Fig. 4: Regions showing greater activity during the encoding of rewarded compared to non-rewarded instructions. 466 

Abbreviations stand for Nucleus Accumbens (N. Acc), inferior frontal junction (IFJ), premotor cortex (PMC), 467 

supplementary motor cortex (SMA), pre-supplementary motor cortex (preSMA) and intraparietal sulcus (IPS). 468 

Model-based RSA results: instruction encoding structured by proactive-control variables.  469 

We aimed to identify regions whose organization during task encoding was explained by 470 

dimension integration, response set complexity and target category. With that purpose, we 471 

employed an RSA (Kriegeskorte, Mur, & Bandettini, 2008) to compare the representational 472 

dissimilarity matrices (RDMs) found in neural data during the encoding stage with theoretical 473 

RDMs corresponding to the three proactive control-related variables (see Fig. 2). In neural RDMs, 474 

each cell contained the dissimilarity (1 – Pearson correlation) between the multivariate patterns 475 

of activation of two trials. In the theoretical RDMs, cells contained dissimilarities (1: maximal, 476 
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0: minimal) that we would expect if a certain variable organized encoding (i.e.: for target category, 477 

all faces-related trials would be minimally dissimilar, while face and food-related trials would be 478 

maximally dissimilar). Using searchlight (Kriegeskorte et al., 2006), we Spearment-correlated 479 

neural and theoretical RDMs across the brain and obtained maps showing how well these three 480 

variables captured the representational space of different areas. The modality of dimension 481 

integration (Fig. 5a) only had a significant effect on rule encoding at the left MFG and IFG, 482 

incurring into the IFS ([-51, 20, 26], k = 642). Response set complexity (Fig. 5b), on the other 483 

hand, organized task representations on a wide cluster including the bilateral IFG, premotor, 484 

supplementary and primary motor cortices, somatosensory area, middle temporal gyrus and 485 

superior and inferior parietal lobe extending along the IPS ([-42, -31, 44], k = 8583) and in the 486 

left parahippocampal cortex ([-18, -40, -1], k = 301). Finally, in the case of the target category 487 

RSA (Fig. 5c), significant correlations were found in an extensive cluster on the left hemisphere 488 

covering the IFG incurring into the IFJ, the fusiform gyrus, the temporo-parietal junction (TPJ), 489 

the inferior and middle temporal gyrus and the precuneus ([-39, -67, 17], k = 5581). On the right 490 

hemisphere, the analysis was also significant on the right middle temporal gyrus and TPJ ([39, -491 

58, 23], k = 442) and the IFG ([42, 26, 14, k = 295]. Finally, the medial superior frontal gyrus ([-492 

9, 53, 26], k = 377) was also involved.  493 

As instructions’ length and speed of responses varied among some of our variables, we performed 494 

an additional multiple regression analysis, in which we included our three theoretical models, an 495 

RDM based on dissimilarities in length, and another one based on RT as regressors. Importantly, 496 

the multiple regression statistical model was examined to detect an excess of collinearity which 497 

could have impaired the interpretability of these results. We computed the VIF for all the 498 

regressors and across our whole sample of participants, and all of were under 1.1, an index of 499 

good estimability of regression weights. The beta maps (one per model) obtained after iterating 500 

the analysis in a searchlight procedure ensured that the variance linked to our RSA models was 501 

not misattributed due to differences in instruction length or speed of responses. Importantly, the 502 

results obtained this way were very similar to the ones extracted with the standard approach, 503 
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identifying the same clusters than before.  504 

 505 

Fig. 5: Model-based RSA searchlight results for the three models (a-c) and render image showing the overlap among 506 

them (d). Note: Identical sections were employed to display the results across models. 507 

We also conducted a conjunction analysis to assess the overlap among regions common to the 508 

three organizational schemes. Only the left IFG and IFJ resulted significant in this test (Fig. 6).  509 

LOSO-based ROI analysis: assessing confluence of models within regions.   510 

The previous analyses left unexplained the extent to which each of the brain areas isolated by 511 

RDM analyses reflected in their organization the three manipulated variables. Furthermore, the 512 

conservative correction for multiple comparisons used in the searchlight could overshadow this 513 

effect elsewhere in the brain. To shed some light upon this issue, we employed a more sensitive 514 

ROI analysis, together with a LOSO approach to avoid double dipping when selecting regions. 515 
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 516 

Fig. 6: Conjunction analysis results. 517 

All the clusters identified in the main group results (Fig. 5) were consistently found across all 518 

participants with the LOSO approach, with the exception of the medial superior frontal gyrus 519 

under the category model, which was absent in four subjects and thus not included in the analysis. 520 

The correlations of the ROIs’ RDMs and the three models’ matrices were analyzed with a repeated 521 

measures ANOVA, in which we found a significant interaction of ROI and Model (F12, 348 = 6.050, 522 

P < .001, p
2 = .173), evidencing variability in instruction coding structure across regions. We 523 

then ran one sample t-tests or Wilcoxon signed-rank tests (depending on data distribution) to 524 

assess model performance in each ROI (see Table 1). The general pattern obtained replicated the 525 

searchlight results: the model which originally identified each specific ROI in the searchlight was 526 

the one explaining most robustly its encoding activity. Further, in almost all the regions, we did 527 

not find enough evidence supporting the effect of the remaining variables. Converging with the 528 

previous analyses, the left IFG identified with the dimension integration model was also 529 

significantly correlated with response set complexity and category. Similarly, the left IFG cluster 530 

found in the category RSA was correlated with the dimension integration model too. In addition, 531 

this confluence of models analysis revealed that the response set model was also significant in the 532 

category-related cluster involving the left fusiform and precuneus (see Table 1).   533 
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Table 1. Effect of the three models on the LOSO-estimated ROIs. 534 

Original model ROI  Model tested T value Z value P value 

Dimension 

integration 

Left IFG Dim. 3.354  .008 

Resp. 3.292  .009 

Cat. 3.635  .004 

Response set 

complexity 

Left IPS Dim. 0.614  1 

Resp. 5.351  < .001 

Cat.  1.975 .163 

Motor cortices, 

left LPFC 
Dim. 2.478  .067 

Resp. 3.647  .004 

Cat. 1.166  .886 

Target category 

Left fusiform 

gyrus and 
precuneus 

Dim. 0.476  1 

Resp. 3.463  .006 

Cat. 5.466  < .001 

Left IFG Dim. 2.832  .029 

Resp.  0.699 .242 

Cat. 4.930  < .001 

Right MTG Dim.  -0.144 .557 

Resp.  -1.008 .843 

Cat.  2.859 .002 

Right IFG Dim.  1.275 .101 

Resp.  -0.206 .582 

Cat.  3.085 .001 

Note: P values displayed are Bonferroni-corrected for multiple comparisons. Abbreviations stand for inferior frontal 535 

gyrus (IFG), intraparietal sulcus (IPS), and middle temporal gyrus (MTG), Dimension integration model (Dim.), 536 

Response complexity model (Resp.) and Target Category (Cat.). 537 

ROI analysis spanning Multiple Demand Network regions.  538 

Following a similar strategy as above, we also examined task encoding organization across the 539 

regions comprising the MD network. We extracted each MD region’s RDM and correlated it with 540 

our three models’ RDM, and then entered the correlation coefficients into a repeated measures 541 

ANOVA. Again, a significant ROI*Model interaction was found (F20, 620 = 2.168, P = .002, p
2 542 

= .065). To assess which models significantly structured activations across MD ROIs, we 543 

conducted one-sample t-tests or Wilcoxon signed-rank tests when data were not normally 544 

distributed (see Table 2).  545 

 546 

 547 
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Table 2. Effect of the three models on the MD network ROIs. 548 

ROI  Model  T val Z val P value 

ACC/preSMA Dim.  0.645 1 

Resp.  1.673 .115 

Cat. -0.026  1 

Left RLPFC Dim.  1.019 .571 

Resp.  0.346 .365 

Cat.  2.665 .023 

Left IFS Dim. 3.644  .005 

Resp. 4.423  < .001 

Cat.  2.328 .058 

Left MFG Dim.  2.739 .014 

Resp.  0.870 .754 

Cat. 4.298  .002 

Left aIfO Dim. 0.667  1 

Resp.  1.206 .228 

Cat.  2.197 .060 

Left IPS Dim. 1.617  .638 

Resp.  2.814 .025 

Cat. 2.639  .071 

Right RLPFC Dim.  0.365 1 

Resp. 1.460  .849 

Cat. 0.861  1 

Right IFS Dim. 2.220  .186 

Resp.  1.599 .211 

Cat.  -0.626 1 

Right MFG Dim. 2.311  .152 

Resp. 1.294  1 

Cat. 2.042  .273 

Right aIfO Dim. 0.023  1 

Resp.  1.299 .280 

Cat. 1.352  1 

Right IPS Dim.  1.262 .548 

 Resp.  1.842 .330 

Cat.  -0.701 1 

Note: P values displayed are Bonferroni-corrected for multiple comparisons. Abbreviations stand for anterior 549 

cingulate cortex (ACC), presupplementary motor area (preSMA), rostrolateral prefrontal cortex (RLPFC), inferior 550 

frontal sulcus (IFS), middle frontal gyrus (MFG), anterior insula/frontal operculum area (aIfO), intraparietal sulcus 551 

(IPS), Dimension integration model (Dim.), Response complexity model (Resp.) and Target Category (Cat.).  552 

Only a subset of MD network regions encoded instructions consistently according to any of the 553 

proactive control variables, and all of them were located on the left hemisphere and in the LPFC 554 

and parietal cortex. The findings were, however, consistent with the searchlight and ROI-related 555 
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results presented so far. The three variables exerted an effect on different left lateral prefrontal 556 

sections: dimension integration and response complexity on the IFG; dimension integration and 557 

target category on the more dorsal MFG; and finally, category on the RLPFC. Response 558 

complexity was the attribute which most robustly captured representational organization in the 559 

IPS. 560 

Effects of reward on representational geometry.  561 

We then explored the effects of motivation in each of the ROIs encoding different attributes of 562 

the instructions (Fig. 5), assessing two possible mechanisms that could underlie the behavioral 563 

improvements linked to reward (Fig. 2). On the one hand, we tested whether reward made our 564 

variables more efficient in sharpening the representational space (Fig. 2d, Hypothesis 1), In other 565 

words, and taking as an example the target category variable, we assessed whether reward 566 

expectations would increase the distance between representations of instructions referring to 567 

different stimulus categories (in extension to the other variables, indicated as different-condition 568 

dissimilarity), while decreasing the distance among those referring to same target category (same-569 

condition dissimilarity). On the other, we tested the alternative possibility that dissimilarities 570 

would be, in general, greater in the rewarded trials (Fig 2d, Hypothesis 2), regardless of the 571 

variables manipulated (i.e., regardless of the pair of instructions being same or different-572 

condition). This could reflect a mechanism for making rule representations more distinguishable 573 

among each other, and also, it would be compatible with the increase in rule decoding accuracy 574 

that has been liked to motivation in previous reports (Etzel et al., 2016). With that purpose, we 575 

extracted, for each region, the average dissimilarity among pairs of instructions pertaining to the 576 

same and different conditions, separately for rewarded and non-rewarded trials. We then used 577 

Wilcoxon signed-rank tests (Nili et al., 2014) to check whether the difference between different-578 

condition and same-condition trials was larger in the rewarded than in the non-rewarded 579 

condition, and also, whether the mean dissimilarity (collapsing across same and different-580 

condition) was increased by motivation.  581 

In the first case, no reward-related differences were observed for any of the instruction-related 582 
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variables (all Ps >.1). It is important to note, however, that these results (as most of the findings 583 

presented in this study) are anchored to the instruction’s encoding stage, in which proactive 584 

control configuration takes place. To explore the possibility that the hypothesized interaction 585 

shaped neural activations during the later implementation phase (more related to reactive control; 586 

Braver, 2012; Palenciano, González-García, Arco, & Ruz, 2018), we conducted a further test 587 

employing beta images from this epoch. However, and again, the expected effect was not 588 

significant for any of the ROIs examined (all Ps >.1).  589 

When addressing the second hypothesis, surprisingly, we found the opposite pattern: reward 590 

systematically decreased the dissimilarity values in all the ROIs evaluated (all Ps < .05, see Table 591 

2). To test the behavioral relevance of this finding we correlated, across our participants, the 592 

average decrease in dissimilarities associated with reward, with the benefit of motivation on 593 

performance (IES; Townsend & Ashby, 1978). We found that in fact, the decrease in 594 

representational distances due to reward was significantly correlated with the motivation-related 595 

improvements in behavioral performance. Furthermore, this seemed to be a quite robust effect, 596 

being present in all of the ROIs included in the analysis (see Table 3 for further details).  597 

MVPA results 598 

We finally aimed to explore the effect of reward directly on decoding accuracies, employing 599 

MVPA (Haxby, Connolly, & Guntupalli, 2014), as it has been previously reported during rule 600 

encoding in a classic, repetitive task-switching setting (Etzel et al., 2016). We discriminated 601 

between the two conditions of each instruction-related variable (i.e., one among faces and food-602 

related trials, other for single versus sequential response requirements, and a last one for within 603 

versus across-dimension integration instructions) separately for rewarded and non-rewarded 604 

trials. We trained and tested our classifiers across the whole brain using searchlight and obtained, 605 

as a result, an accuracy map for each motivation condition and variable. Nonetheless, while 606 

classification was above chance in different brain regions for the three variables, we did not detect 607 

any differences in accuracies between rewarded and non-rewarded trials, as no cluster survived 608 

at the group-level the t-test assessing above zero differences between the two motivation 609 
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conditions.  610 

Table 3. Effect of reward on dissimilarity values and correlation with behavioral improvement. 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

Note: The asterisks indicate significance at P < .05 on the Wilcoxon paired-sample signed-rank test (middle column) or 620 

Pearson correlation coefficient (left column). In the last case, multiple comparisons were controlled with an FWE 621 

criterion. Abbreviations stand for inferior frontal gyrus (IFG), inferior frontal junction (IFJ), primary motor cortex 622 

(M1), premotor cortex (PM) supplementary motor area (SMA), parahippocampal cortex (PHC), middle temporal gyrus 623 

(MTG), temporoparietal junction (TPJ) and superior frontal gyrus (SFG).  624 

Discussion 625 

In the present study, we aimed to characterize the representational space for novel instructions 626 

during their proactive preparation. We assessed whether variables linked to proactive control 627 

organized encoding activity patterns and whether this structure was affected by reward 628 

expectations. Our results portrayed a complex landscape, where different organizational 629 

principles governed instruction encoding in FP cortices and lower-level perceptual and motor 630 

areas.  631 

The left IFG/IFJ reflected the most complex and overarching representational structure, with 632 

activity patterns structured by dimension integration, response complexity and target category. 633 

Robust evidence supports the role of the IFJ in task-set reconfiguration (Brass, Derrfuss, 634 

Forstmann, & Cramon, 2005) in practiced (e.g. Woolgar, Hampshire, Thompson, & Duncan, 635 

2011) and novel contexts (e.g. González-García et al., 2016; Muhle-Karbe et al., 2017), 636 

ROI 
Effect of reward on 

dissimilarity values 

Correlation  

RSA - behavior 

Task set complexity   

Left IFG/IFJ Z = -3.005* r = 0.515* 

Response set complexity   

M1 / PM / SMA / 

IPS 
Z = -3.712* r = 0.565* 

Left PHC Z = -3.712* r = 0.558* 

Target category   

Left fusiform 

gyrus/ precuneus / 
IFG/IFJ 

Z = -3.712* r = 0.543* 

Right MTG/TPJ Z = -4.419* r = 0.495* 

Right IFG Z = -3.712* r = 0.533* 

Medial SFG Z = -2.652* r = 0.482* 
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orchestrating neural dynamics during attentional selection (e.g. Baldauf & Desimone, 2014). This 637 

region seems to be involved in task-set maintenance (Sakai, 2008), selecting task-relevant 638 

information represented in perceptual regions (Cole, Reynolds, et al., 2013; Miller & Cohen, 639 

2001). The current study advances our knowledge about the structure underlying how information 640 

is coded during novel instruction encoding, and stresses the diversity of task parameters that 641 

orchestrate task encoding in the IFG/IFJ. Such a complex, multidimensional representational 642 

space (Rigotti et al., 2013) could be key to support the richness and flexibility of human behavior 643 

in novel environments. This perspective qualifies recent research, based on MVPA, that highlights 644 

the compositionality characterizing representations held in the IFG (Cole, Laurent, et al., 2013; 645 

Deraeve, Vassena, & Alexander, 2019; Reverberi, Görgen, & Haynes, 2012), by which complex 646 

tasks are coded by combining their simpler constituent elements. 647 

The IPS also encoded novel rules proactively, but now according to response complexity. While 648 

this is quite consistent with previous studies linking the parietal cortex to action preparation, it is 649 

worth noticing the distinction found in our data between parietal and prefrontal regions, a finding 650 

further confirmed with a more sensitive ROI analysis. Dimension integration, the variable 651 

manipulated to appeal to a higher-level task goal representation, had an effect only on LPFC, 652 

while the IPS was linked to the more specific response-set complexity (De Baene & Brass, 2014; 653 

Rubinstein et al., 2001). The frequent coativation of IFG/IFJ and IPS in demanding paradigms 654 

(Duncan, 2010) had complicated the identification of their separate contributions. The differential 655 

pattern we observed is highly relevant to disentangle their proactive role. Interestingly, the 656 

emerging picture portraits the IFG/IFJ and the IPS collaborating during novel task representation, 657 

with the former maintaining overarching representations of all relevant variables, and the latter 658 

activating the relevant stimulus-response contingencies (see also Muhle-Karbe et al., 2014). The 659 

use of RSA in our paradigm provides a deeper understanding of this process, emphasizing that 660 

the proposed two-stage preparatory mechanism also guides task-set encoding in FP cortices. In 661 

this sense, variables key for abstract goal or specific S-R settings become relevant differentially 662 

depending on the region.  663 
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Additional medial and lateral frontal cortices also participate in the FP network and are frequently 664 

recruited during task preparation (Duncan, 2010). Consequently, we also examined instruction 665 

coding in these MD regions. Our findings highlighted other LPFC areas reflecting target category 666 

(both the RLPFC and MFG) and dimension integration (MFG). The overall pattern of results 667 

obtained both with whole-brain and with ROI approaches reflects high heterogeneity within the 668 

FP network in general, and in the LPFC in particular, in terms of the attributes structuring task-669 

set representation. In contrast, we did not obtain evidence supporting proactive task-set encoding 670 

in the ACC/preSMA and the aIfO regions. This finding fits with the subdivision of the FP network 671 

into two differentiated components: one anchored in the LPFC and IPS, and a second one 672 

composed by the ACC and the aIfO (Dosenbach et al., 2007; Palenciano et al., 2018). In line with 673 

our results, anticipatory task coding has been predominantly found in regions from the former 674 

rather than in the latter (Crittenden, Mitchell, & Duncan, 2016). Ultimately, the variability found 675 

within the FP control network during proactive novel task setting (Palenciano et al., 2018), with 676 

different processes and representational formats being combined, could be key to maximize 677 

flexibility. 678 

Fronto-parietal cortices were not the sole brain regions encoding novel instruction parameters. 679 

Activity in fusiform gyri was organized according to target category, whereas patterns in 680 

somatomotor cortices reflected response complexity. While these regions are not associated per 681 

se with proactive control, their involvement reflects that their representational geometry is tuned 682 

in an anticipatory fashion by relevant task parameters conveyed by instructions. It is important to 683 

stress that all the results discussed were locked to instruction encoding, where no target stimuli 684 

had been presented, neither any specific motor response could have been prepared. These findings 685 

suggest that FP areas exert a bias in posterior cortices, according to the content of instructions. 686 

Supporting this, increments of mean activity (Esterman & Yantis, 2010) and target-specific 687 

information encoding (e.g. Stokes, Thompson, Nobre, & Duncan, 2009) have been reported in 688 

perceptual and motor regions during preparation. Importantly, these changes have been linked to 689 

boosts in functional connectivity between the FP and posterior cortices (González-García et al., 690 
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2016; Sakai & Passingham, 2006). In direct relation to our findings, a recent study showed that 691 

the representational organization in regions along the visual pathway is dynamically adapted to 692 

task demands (Nastase et al., 2017). Our current results add to these findings by showing that 693 

representational space tuning could be a mechanism of preparatory bias, which could reflect 694 

predictive coding principles where iterative loops of feedback and feedforward communication 695 

shape cognition (Friston, 2005). 696 

Crucially, the structure of information encoded by all these regions was sensitive to trial-wise 697 

motivational states. Surprisingly, reward expectation diminished the dissimilarities between the 698 

representations of the instructions although preserving the organizational scheme found in each 699 

area. Based on recent findings of increased task decodability (Etzel et al., 2016), we had 700 

hypothesized that reward would either polarize the representational structure  or  increase the 701 

representational distances overall. Results were, however, in the opposite direction, even when 702 

our reward manipulation was successful at boosting performance and also increased activity in 703 

control and reward-related regions (Parro et al., 2017). Most importantly, decreases in 704 

dissimilarities were also robustly correlated with behavioral improvements. Taking into account 705 

that additional analysis employing MVPA and using data from the implementation stage 706 

corroborated these results, their implication must be thoughtfully considered. One possibility is 707 

that the decrease in dissimilarities is generated by a general boost of reward in signal-to-noise 708 

ratio. Although our results persisted after normalizing data across trials, a reward-related 709 

reduction of multivariate noise pattern could still be possible, and it could benefit task coding in 710 

the absence of the hypothesized RSA results. However, the MVPA did not reveal improved task 711 

classification accuracy in the rewarded condition, and thus this interpretation remains uncertain. 712 

Alternatively, motivation could have influenced task coding in ways that our searchlight 713 

procedure was not sensitive to. That would be the case if reward affected the spatial distribution 714 

of information: as ROIs were defined by size-fixed searchlight spheres, and were equal in 715 

rewarded and non-rewarded conditions, an effect like that would remain shadowed. Finally, the 716 

task complexity could also be key. In less demanding situations such as repetitive task switching 717 
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(Etzel et al., 2016), reward could directly sharpen task encoding representations. In novel 718 

environments, however, motivation could exert a more general effect at the process level -instead 719 

of at the representational one. It could increase the efficiency of task reconfiguration (Braem & 720 

Egner, 2018), as indexed by the improvements in behavior, while the specific rule representations 721 

would remain equally structured. Nonetheless, more research is needed to properly characterize 722 

the intricate interactions among proactive control and motivation (Pessoa, 2017) in rich task 723 

environments, more akin to daily life situations. 724 

The current study entails some limitations that constrain the scope of our findings and call for 725 

further research. On the one hand, the nature of our paradigm demanded the selection of a few 726 

instruction-organizing variables. Some other dimensions, critical for anticipatory encoding, may 727 

have been left unaddressed. Furthermore, non-linear combinations of variables could add to the 728 

organization principles governing control regions (Rigotti et al., 2013). Considering an increasing 729 

number of plausible models in more complex and/or naturalistic scenarios, together with data-730 

driven methods such as multidimensional scaling or component analysis, will complement our 731 

results. On the other hand, our main dependent variable (fMRI hemodynamic signal) provided 732 

spatially precise, but temporal impoverished data. Temporally resolved techniques, such as 733 

electroencephalography or magnetoencephalography, could be key to unveil the temporal 734 

dynamics of the representational patterns.  735 

Overall, our findings provide novel insights on how verbal complex novel instructions organize 736 

proactive brain activations. The emerging picture departs from pure localizationist approaches 737 

where brain regions carry fixed information about concrete cognitive processes. Rather, the 738 

different dimensions relevant for efficient instructed action shape brain activity across an 739 

extended set of areas, flexibly structuring encoding activity according to the relevant task 740 

parameters. 741 
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